Connecting Small-scale Renewables to the Smart Grid

On Thu, Oct 14, 2010 at 4:04 PM, Scott’s Contracting <scottscontracting> wrote:

By Dick DeBlasio, NREL

Smart grid enthusiasm is everywhere, and much is rooted in the opportunity to increase reliance on renewable energy sources such as biomass, geothermal heat, sunlight and wind.

Small-scale renewable energy is an especially promising notion, offering the chance to widely decentralize power production and create a more secure, resilient facility for electricity delivery. In a scenario of distributed generation, utilities would be better positioned to more efficiently manage peak demands, subvert transmission overloads and keep power flowing to everyone. Their customers, in turn, would be able to lower costs by offsetting some of their usage of utility-provided power and effectively, via net metering, selling power back to the grid.

Where do barriers to connecting small-scale renewables to the smart grid reside? And what business, regulatory and consensus standards activities are taking place to overcome them?

Going Green in Steps Large and Small

With global energy demand climbing for foreseeable decades and governments at various levels legislating incremental conversion to green power, the next-generation smart grid will leverage renewable energy sources to a greater degree than before.

Large-scale renewables such as commercial wind farms figure to factor more prominently in worldwide energy supply. Small-scale, distributed renewables, too, stand to comprise an increasing role as interconnection methods for solar, wind and other generation technologies for consumers and businesses and storage candidates such as electric-vehicle batteries mature.

Small-scale renewables’ modularity offers benefits that central-station power plants and long-distance transmission and distribution alone cannot deliver because power is generated when and where it is needed. When connected to the grid, distributed resources can augment the traditional, central-station model by relieving pressure on the entire facility during peak demand.

Key barriers must be overcome, however, to realize the potential of smart grid distributed generation and small-scale renewable energy sources. Advocates of all technoliges oversimplify logistics or exaggerate their causes’ benefits, and some proposed renewables-leveraging techniques never have been done on significant scale. The existing grid was designed for centralized production of consistently flowing power; decentralization and increased reliance on intermittent renewable energy sources represent nothing less than one of the smart grid’s transformations with significant business, regulatory and technical ramifications.

Understanding Interconnection Barriers

Grid interconnection of distributed generation technologies calls up cost, safety, security, reliability and interoperability issues.

Only limited history of their customers’ providing power back to the grid exists; utilities have concerns about employee safety and system reliability regarding wide participation in power generation by interconnected nonutilities. Some utilities go beyond typical requirements, such as preventing power from flowing back to the grid when de-energized and ensuring access to manual disconnects, to mandate isolation transformers and steep liability insurances that make interconnection complex and costly.

The grid interface is a prime focus. It can contribute to worker safety and grid security during failures by adopting protective schemes. Here, too, common billing and measurement techniques are needed for a utility to cost-effectively engage all its customers and their multivendor, small-scale renewable generation technologies.

Storage also must be improved to realize renewables’ greatest smart grid promise. Renewable energy sources have nonconstant output, so to count on them, the smart grid must be able to flexibly store for later use the power generated when the wind blows, the sun shines, etc. Storage solutions based on compressed air, district heating systems, electric vehicle batteries or pumped hydro must mature to adapt the smart grid for renewables’ intermittency.

Moving Forward

Entities are helping overcome regulatory and business barriers to connecting renewables to the smart grid. Some jurisdictions and utilities offer incentives for participation in small-scale renewable generation.

In Europe, negotiations exist about how to distribute fairly the costs for linking distributed resources and accommodating their interconnection upstream in the grid.

The Department of Energy announced in July $92 million in new funds to stimulate innovation in U.S. green technology such as affordable, large-scale storage.

As for technical barriers, it is consensus standards development where the hype of a concept’s potential is distilled down to functional reality.

Standards development can offer the gamut of the stakeholders in a technology’s development an open, fair and equitable process to ensure industry and society’s needs are well-served, to eliminate unnecessary expenditures and to unleash innovation.

IEEE has more than 100 smart grid standards in development. The IEEE 1547 Standard for Distributed Resources Interconnected with Electric Power Systems is a widely adopted resource relevant to small-scale renewables. It addresses the performance, operation, testing, safety considerations and maintenance of a grid interconnection.

IEEE 1547 has been identified in the U.S. National Institute of Standards and Technology (NIST) “Framework and Roadmap for Smart Grid Interoperability Standards.”

A series of standards subsequently has emerged to complement the original IEEE 1547. P1547.8, targeted for 2012 ratification, is designed to future-proof the original framework by extending current functionality to emerging storage technologies and future advancements and by addressing industry and NIST recommendations for improved interconnection performance functionality.

The draft standard provides greater support for intermittent renewables and more flexible use of inverters, such as those in home solar power systems, enabling easier, more robust grid connection.

IEEE P1547.8 also addresses energy storage devices, hybrid generation storage systems and plug-in electric vehicles.

The IEEE P2030 Working Group was formed in March 2009 to unify communications, information technology (IT) and power engineers in developing a guide that establishes common smart grid definitions and identifies the next-generation facility’s necessary elements and functional requirements.

The working group found the need for more than 70 standard interfaces to interconnect utilities, customers and components such as generation systems for small-scale renewable energy systems.

Sponsor balloting for the IEEE P2030 guide is scheduled for March 2011.

Renewables’ role is expanding, and the ongoing, worldwide smart grid rollout only will accelerate that trend.

Distributed generation of small-scale renewable sources promises especially valuable benefits to utilities and their customers across efficiency, flexibility, security, reliability and economics.

Governments, utilities and standards bodies are working to overcome interconnection barriers and to ensure renewables’ potential is realized in next-generation electricity delivery facility.

In addition to his role as chair of the IEEE P2030 Working Group, Dick DeBlasio is a member of the IEEE Standards Association Board of Governors and chief engineer and principle laboratory program manager for electricity programs with the National Renewable Energy Laboratory, http://nrel.gov.

2 Comments

Leave a Reply-Scotty will respond asap

This site uses Akismet to reduce spam. Learn how your comment data is processed.